文章编号: 0253-2239(2010)01-0277-06

原子层沉积制备 Al₂O₃ 薄膜的光学性能研究

何俊鹏 章岳光 沈伟东 刘 旭 顾培夫

(浙江大学现代光学仪器国家重点实验室,浙江杭州 310027)

摘要 研究了原子层沉积制备氧化铝薄膜的光学性能。以三甲基铝(TMA)和水为前聚体,分别在基板温度为 250 ℃和 300 ℃的 K9 和石英玻璃衬底上沉积了 Al₂O₃ 光学薄膜。采用分光光度计,X 射线光电子能谱(XPS),X 射线衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM)等分析手段对薄膜的微结构、表面形貌和光学特性进行了研究。结果表明,原子层沉积法制备的 Al₂O₃ 薄膜在退火前后均呈现无定形结构,元素成分接近化学计量比,其表面粗糙度小于 1.2 nm,聚集密度高于 0.97,光学非均匀性优于 1%。同时在中紫外到近红外均有很好的光学性能,适合作为中间折射率和低折射率材料在光学薄膜中得到应用。

关键词 薄膜光学;原子层淀积;A12O3薄膜;光学特性

中图分类号 O484.4 文献标识码 A doi: 10.3788/AOS20103001.0277

Optical Properties of Al₂O₃ Thin Film Fabricated by Atomic Layer Deposition

He Junpeng Zhang Yueguang Shen Weidong Liu Xu Gu Peifu

(State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract The optical properties of Al_2O_3 films grown by atomic layer deposition were investigated. Trimethylaluminium (TMA) and water vapour (H_2O) were used as the chemical precursors to deposit Al_2O_3 films on glass substrates at temperature of 250 °C and 300 °C respectively. Characterization of the films such as optical properties, surface morphological image and microstructure were performed by using spectrophotometer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results show that both the as-deposited and annealed Al_2O_3 films are amorphous. The surface roughness is as low as 1.2 nm while the packing densities are larger than 0.97. Al_2O_3 films by this technique exhibit good optical properties with low absorption in the spectral region from mid-ultraviolet to near-infrared. This study indicates that Al_2O_3 film deposited by ALD is applicable for optical coatings of the materials with midde and low refractive index.

Key words thin film optics; atomic layer deposition; A12O3 thin films; optical properties

1 引 言

原子层沉积(ALD),又称原子层外延方法,最 初是由芬兰科学家于20世纪70年代提出。原子层 沉积技术由于其沉积参数(厚度,成份和结构)的高 度可控性,优异的沉积均匀性和一致性等特点^[1,2], 使得其在光学与光电子薄膜领域具有广泛的应用潜 力,最近几年引起了高度关注。就目前的报道来看, ALD 的应用领域已逐渐从半导体拓展到其他领域, 如光学领域^[3~5]。杜邦公司(DuPont)采用 ALD 制 备厚度 25 nm 的 Al₂O₃ 薄膜作为有机电致发光二 极管(OLED)的气体扩散阻隔层,大大地提高了 OLED 的发光寿命;芬兰 Planner System 公司提出 了在 TiO₂ 薄膜中插入 Al₂O₃ 纳米层来破坏结晶, 获得无定形且残余应力小的 TiO₂ 薄膜;美国

收稿日期: 2008-11-07; 收到修改稿日期: 2009-04-01

基金项目:国家自然科学基金(60778025)和中国博士后科学基金(20081463)资助课题。

作者简介:何俊鹏(1985-),男,硕士研究生,主要从事光学薄膜方面的研究。E-mail: hjpcool@126.com

导师简介:章岳光(1968—),男,博士,副教授,主要从事光学薄膜方面的研究。

E-mail: zhangyueguang@zju.edu.cn(通信联系人)

Corning 公司在 DLP 显示芯片 DMD 的封装中采用 ALD 的 Al₂O₃ 薄膜作为密封层等。

Al₂O₃ 材料作为一种很常用的高折射率材料广 泛应用于多层介质膜中。Al₂O₃ 薄膜的光学特性强 烈依赖于镀膜工艺条件及杂质污染等其它因素^[6]。 传统电子束热蒸发方法沉积的 Al₂O₃ 薄膜容易出 现失氧及结构疏松等情况,限制了其在紫外波段的 应用。采用离子辅助技术可以在一定程度上得到改 善,但是不利之处是同时又引入了其它的污染^[7]。 有关 ALD 制备 Al₂O₃ 薄膜的栅极特性已有相关文 献[8,9]报道过,主要研究 Al₂O₃ 薄膜的微结构和 电学特性。但 Al₂O₃ 薄膜作为栅极介电层研究时 膜层较薄,并且其光学特性也未见报道。

采用原子层沉积方法在不同温度下沉积了 Al₂O₃单层膜,分析其光学性能、微结构和表面状况。有关 ALD 的沉积原理及其在光学方面的潜在 应用已有文献[10]进行过报道,本文重点介绍 Al₂O₃光学薄膜的 ALD 制备方法及其光学特性。

2 薄膜制备

薄膜的制备是在芬兰 Beneq 公司的 TFS 200 ALD 沉积设备上进行的。由于 ALD 法制备半导体 工业用 Al₂O₃ 栅极薄膜的工艺比较成熟,只是其薄 膜厚度很薄(几个纳米量级),因此在制备中以最常 用的三甲基铝(TMA)和水为反应源,沉积温度设 定在 250 ℃和 300 ℃,反应腔工作压强保持 40 Pa。 基板采用直径为 30 mm,厚度为 2 mm 的 K9 玻璃 和 JGS1 石英玻璃。所有基板经过仔细抛光,表面 光圈均小于一个,均方根粗糙度在 1 nm 左右。基 片清洗采用先进行超声波处理,再用乙醚溶液清洗 工序,为检查重复性,样品数均为 2 个。

在 Al₂O₃ 薄膜的原子层淀积过程中,每个生长 周期时间为1s,主要包括两个半反应。1)TMA 在 N₂的携带下脉冲进入反应腔,化学吸附在衬底,然 后,用 N₂ 吹洗并带走腔中剩余的 TMA;2)H₂O 在 N₂ 的携带下脉冲进入反应腔并与吸附在衬底上的 TMA 反应,生成 Al₂O₃ 和副产物 CH₄。同样地, CH₄ 及过量的水由 N₂ 吹洗带出反应腔。

3 性能分析

 $A1_2O_3$ 薄膜 200~2000 nm 的光谱测量均由 Perkin Elmer 公司生产的 Lambda900 光谱测试仪 获得,仪器的波长分辨率为 0.08 nm,反射率的测量 通过与标准石英基板作比较得到。薄膜的厚度和折 射率由薄膜的光谱透射比和反射率通过光度法[11] 得到。薄膜透射比温漂实验在实验室自制的可控温 分光光度计上完成^[12]。XPS 测试在 AXIS Ultra (英国 Kratos 公司)的光电子能谱仪上进行,使用带 单色器的铝靶 X 射线源(Al Kα,1486.71 eV)。在 测试过程中,把样品放置在预处理室进行真空处理 以除去表面吸附的杂质,再将样品送入分析腔中。 所有元素的结合能均以污染碳的 C ls(284.8 eV)谱 线作为内标校正样品的荷电效应。薄膜的微结构由 RIGAKU /MAX-3C 型 X 射线衍射(XRD)仪进行 测量分析。退火前后薄膜的表面形貌用 PSIA 公司 的 XE-100 型原子力显微镜(AFM)表征。测试时采 用 Si₃N₄ 微悬臂做探测针尖,以轻敲模式对样晶进 行成像。用 FEI 公司的 SIRON 型扫描电镜观察薄 膜表面的形貌结构,该扫描电镜的分辨率为10 nm。 测试过程中为了研究薄膜的老化特性,将薄膜样品 进行 350 ℃退火处理,时间为 2 h。

4 结果分析

4.1 薄膜的光学特性

图1是石英基板上 Al₂O₃ 薄膜的透射光谱曲 线,可以看出 Al₂O₃ 薄膜的透射比均很高。在中紫 外、可见光和近红外波长范围内(200~2000 nm), 透射比平均值均在 87%以上,极值点透射比约为 93%,接近石英玻璃基片的透射比。在中紫外区 (200~400 nm),薄膜仍有较高的透射比,其中在入 射波长为 278 nm 处透射比极值为 92%。

ALD 通过表面自限制反应,交替沉积薄膜,每 次沉积的薄膜在化学动力学特性、组分成分、厚度等 方面保持一致性。同时由于自饱和表面反应,使得 表面沉积对气体流量与基片表面的形状等条件不敏 感,这为沉积平坦、均匀的原子层薄膜创造了条件。 图 2 是石英基板上 Al₂O₃ 薄膜的反射光谱曲线,从 图中可以看出薄膜的反射率极值与基板反射率基本 相同,膜层均匀性非常好,其折射率非均匀性小于 1%。所以 Al₂O₃ 薄膜整体吸收很小,在中紫外到 近红外均有很好的光学性能。

图 2 石英基板上 Al₂O₃ 薄膜的反射光谱曲线 Fig. 2 Reflection spectra of Al₂O₃ thin films grown on quartz substrates

图 3 是 Al₂O₃ 薄膜在室温和加热到 120 ℃时测 试得到的透射光谱。温度升高后,波长向短波漂移, 说明薄膜中吸附的水汽从薄膜内部解吸^[8]。从温漂 曲线看出透射比的半高全宽所对应的波长漂移了 1 nm,计算可知,250 ℃和 300 ℃基板温度下沉积 Al₂O₃ 薄膜的聚集密度均大于 0.97。连续的 ALD 过程使薄膜无针孔,具有很高的密度^[11,12],这从图 10 的 SEM 截面图中也得到了证实。

薄膜的厚度和折射率由薄膜的光谱透射比和反 射率通过光度法得到。从图 1 和图 2 的光谱曲线可 以得到,300 ℃和 250 ℃基板温度下沉积的 Al₂O₃ 薄膜的厚度分别为 224 nm 和 241 nm。图 4 为对应 的折射率色散情况。在 550 nm 处两个温度下沉积 薄膜的折射率均大于 1.65,比电子束蒸发生长的 Al₂O₃ 薄膜的折射率(1.62)稍大。由上面聚集密度 可知,这是因为原子层沉积的薄膜更加致密。两种 温度下原子层沉积 Al₂O₃ 薄膜的消光系数都小于 10⁻⁴,优于电子束蒸发制备的氧化铝薄膜^[7]。退火 后薄膜透射比和反射率光谱没有明显变化,图 5 表 明退火后折射率稍有提高。

图 4 BK7 玻璃上 Al₂O₃ 薄膜的折射率色散 Fig. 4 Refractive index of Al₂O₃ thin films grown on BK7substrates

图 5 退火前后 300 ℃沉积的 Al₂O₃ 薄膜的折射率比较 Fig. 5 Refractive index of Al₂O₃ thin films grown at 300 ℃ after annealing

4.2 表面形貌

光学薄膜对膜层表面要求很高,粗糙表面造成光 散射而影响膜层光学性能。Al₂O₃ 薄膜在 350 ℃下 退火处理前后的表面形貌三维照片如图 6 和图 7 所 示。膜层表面光滑平整,由许多细小颗粒组成,颗粒 起伏很小,一般峰高在 3 nm 左右,最大峰高接近 5 nm,达到光学表面的要求。通过扫描探针显微镜 软件分析,镀膜前基板均方根粗糙度在 1 nm 左右, 300 ℃和 250 ℃基板温度工艺沉积薄膜的表面均方 根粗糙度(RMS)分别为 1.16 nm 和 1.15 nm,退火后 薄膜表面没有明显变化,RMS 表面粗糙度分别为 1.10 nm和 1.02 nm,与电子束蒸发制备的氧化铝薄 膜的表面粗糙度相当^[7]。

图 6 300 ℃沉积的 Al₂O₃ 薄膜 AFM 表面形貌图。(a)退火前,(b)退火后

Fig. 6 Morphological image of Al_2O_3 thin films grown at 300 °C. (a) as deposited, (b) after annealing

图 7 250℃沉积的 Al₂O₃ 薄膜 AFM 表面形貌图。(a)退火前,(b)退火后

Fig. 7 Morphological image of Al_2O_3 thin films grown at 250 °C. (a) as deposited, (b) after annealing

4.3 微结构

图 8 是刚淀积薄膜和 350 C退火后 Al₂O₃ 薄膜 的 O ls 和 Al 2p XPS 谱图。对于退火前后样品,其 O ls和 Al 2p 的结合能之差均为(456.7±0.05) eV, 接近蓝宝石(纯 Al₂O₃)的 456.6 eV^[8],表明薄膜主要 由 Al-O键组成。薄膜退火前后的Al 2pXPS谱均 表现为对称的高斯分布,且具有稳定的峰位,如 图 8(c)和(d)所示。这也表明薄膜中的 Al 元素主要 是以 Al-O键的形式存在。根据峰面积,计算出退 火前后薄膜中 O 和 Al 元素的相对比例分别为1.59和 1.58,即 ALD 沉积的 Al₂O₃ 薄膜元素成分接近化学 计量比。

图 8 Al₂O₃ 薄膜的 O ls 和 A1 2p XPS 谱图。(a),(c) 刚淀积薄膜;(b)(d) 350 ℃退火后

Fig. 8 Ols and Al2p XPS spectra image of ALD Al₂O₃ films. (a) and (c) as-deposited; (b) and (d) after annealing at 350 ℃ 图 9 是 Al₂O₃ 薄膜的 X 射线衍射(XRD)谱,从上 下沉积的 Al₂O₃ 薄膜退火前后都没有明显的结晶

到下,分别对应 250 ℃退火后,300 ℃退火后,250 ℃ 及300 ℃。XRD分析表明 250 ℃和 300 ℃基板温度 and (c) as-deposited; (b) and (d) after annealing at 350 ℃ 下沉积的 Al₂O₃ 薄膜退火前后都没有明显的结晶产 生,生长的薄膜均呈现无定形结构。图 10 为 Al₂O₃ 薄膜 250℃沉积在 K9 基板上的 SEM 截面图。可以 看出玻璃基板上 Al₂O₃ 薄膜层为无定形,连续均匀。 膜横断面微观无柱状结构且没有明显的针孔,整体致 密,这与前面的温漂分析结果相一致。同时 SEM 得 到薄膜的物理厚度与光度法计算的相同。

图 9 Al₂O₃ 薄膜的 XRD 谱图

图 10 Al₂O₃ 薄膜 SEM 截面图 Fig. 10 SEM image of Al₂O₃ film

5 分析讨论

薄膜样品的光学损耗包括吸收和散射两个方面。采用传统的电子束热蒸发方法沉积的 A1₂O₃ 薄膜在紫外波段存在明显的光学损耗,主要是电子 束蒸发制备的 A1₂O₃ 薄膜在未经过退火处理时存 在一定的氧化不充分现象,这是引起吸收损耗的一 种主要原因^[7]。原子层沉积的 A1₂O₃ 薄膜在中紫 外到近红外均有很好的光学性能,光度法得到的消 光系数小于 10⁻⁴。在 200~400 nm 段透射比明显 高于电子束热蒸发方法沉积的 A1₂O₃ 薄膜^[7],并且 退火前后透射光谱曲线变化不大。由 XPS 结果可 知,原子层沉积 A1₂O₃ 薄膜氧化充分,薄膜材料的 元素成分接近化学计量比。

电子束热蒸发方法制备的薄膜都具有显著的柱状结构,有针孔并且结构疏松,聚集密度低。而聚集 密度影响薄膜的光学稳定性,当聚集密度较低时薄 膜容易吸潮,引起波长漂移。由 SEM 和温漂结果可知,原子层沉积的 A1₂O₃ 薄膜没有明显的针孔,整体致密,膜层质量高。

ALD 方法可以在光学薄膜的基板上(石英玻璃 和 K9 玻璃)生长 A1₂O₃ 薄膜,且有宽广的工艺温度 窗口,较高的反应气压,能在大面积衬底上生长高质 量的薄膜,满足复杂要求光学多层膜,抗激光损伤薄 膜等方面的应用^[13~16]。但 ALD 也存在沉积速率缓 慢和反应前驱体较贵的问题,需要通过成批处理来 补偿 ALD 速率,以及对反应前驱体和工艺过程进 一步研究。

6 结 论

以TMA和H₂O为反应源,在250℃和300℃ 下用ALD技术在K9玻璃和JGS1石英玻璃衬底上 生长了Al₂O₃薄膜,研究了Al₂O₃薄膜的光学特 性。通过透射比和反射率光谱发现ALD的Al₂O₃ 薄膜均匀性很好,膜层较致密且折射率比PVD制 备薄膜高。Al₂O₃薄膜退火前后均为无定形结构, 在中紫外到近红外均有很好的光学性能。原子力显 微镜(AFM)的结果表明制备的Al₂O₃薄膜颗粒很 小,表面粗糙度低,在350℃退火后其薄膜表面没有 明显变化。SEM断面显示玻璃基板上Al₂O₃薄膜 层为无定形,连续均匀,微观无柱状结构且没有明显 的针孔,整体聚集密度高。这表明原子层沉积的 Al₂O₃薄膜完全满足光学领域要求,有望在光学薄 膜的制造中应用。

参考文献

- 1 H. L. Goodman. Atomic layer epitaxy[J]. J. Appl. Phys., 1986, 60(3): R65~R81
- 2 Suntora. Atomic layer epitaxy[J]. Thin Solid Films, 1992, **216**: 84~89
- 3 P. F. Carcia, R. S. McLean, M. H. Reilly *et al.*. Ca test of Al₂O₃ gas diffusion barriers grown by atomic layer deposition on polymers[J]. American Institute of Physics, 2006, 89: 031915
- 4 A. Nikolov, J. Wang, X. Ouyang *et al.*. NanoOpto Corp, Films for optical use and methods for making such films [P]. U. S. Patent 7,142,375
- 5 J. Maula, K. Harkonen, A. Nikolov *et al.*. Multilayer material and method of preparing the same[J]. U. S. Patent Application, 2006, **11**: 0134433
- 6 O. Apel, K. Mann, A. Zoeller *et al.*. Nonlinear absorption of thin Al₂O₃ film at 193 nm [J]. *Appl. Opt.*, 2000, **39**(18): 3165~3169
- 7 Shang Shuzhen, Liao Chunyan, Yi Kui *et al.*. Experimental study of annealing effects on electron-beam evaporated Al_2O_3 films[J]. *High Power Laser & Particle Beams*, 2005, 11(04): 511~514

尚淑珍,廖春艳,易 葵等.退火对电子束热蒸发 Al₂O₃ 薄膜性

能影响的实验研究[J]. 强激光与粒子束,2005,11(04):511~514

- 8 Stefan Jakschik, Uwe Schroeder, Thomas Hecht *et al.*. Crystallization behavior of thin ALD-Al₂O₃ films[J]. *Thin Solid Films*, 2003, **425**: 216~220
- 9 Lu Hongliang, Xu Ming, Ding Shijin *et al.*. Thermal stability of atomic layer deposition Al₂O₃ thin films [J]. J. Inorganic Materials, 2006, (05): 31~37 卢红亮, 徐 敏, 丁士进等, 原子层淀积 Al₂O₃ 薄膜的热稳定性
- 研究[J]. 无机材料学报, 2006, (05): 31~37
- 10 He Junpeng, Zhang Yueguang, Shen Weidong *et al.*. Atomic layer deposition and its applications in optical thin films[J]. J. Vacuum Science and Technology, 2009, 29(2): 173~179 何俊鹏,章岳光,沈伟东等.原子层沉积技术及其在光学薄膜中 的应用[J].真空科学与技术学报,2009, 29(2): 173~179
- 11 Shen Weidong, Liu Xu, Ye Hui *et al.*. A new method for determination of the optical constants and thickness of thin film [J]. *Acta Optica Sinica*, 2004, 24(7): 885~888
 沈伟东,刘 旭,叶 辉等.确定薄膜厚度和光学常数的一种新

方法[J]. 光学学报, 2004, 24(7): 885~888

- 12 Xue Hui, Li Haifeng, Huang Wenbiao *et al.*. Design of spectrophotometer for measuring polarized transmittance and reflectance at different temperature [J]. *J. Zhejiang University*(*Engineering Science*), 2007, **41**(9): 1523~1526 薛 晖,李海峰,黄文标等.可测温漂的偏振透反射分光光度计的设计[J]. 浙江大学学报(工学版), 2007, **41**(9): 1523~1526
- 13 Shin-ichi Zaitsu, M. Shinji, J. Takahisa. Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition [J]. Japanese J. Appl. Phys., 2004, 43(3): 1034~1035
- 14 Cheng Xu, Jianke Yao, Jianyong Ma *et al.*. Laser-induced damage threshold in n-on-1 regime of Ta₂O₅ films at 532,800 and 1064 nm[J]. *Chin. Opt. Lett.*, 2007, 5(12): 727~729
- 15 Xiao Hu, Juan Song, Qinling Zhou *et al.*. Self-formation of void array in Al₂O₃ crystal by femtosecond laser irradiation[J]. *Chin. Opt. Lett.*, 2008, 6(5): 388~390
- 16 Jingmei Yuan, Hongji Qi, Yuan' an Zhao et al.. Influence of purity of HfO₂ on reflectance of ultraviolet multilayer[J]. Chin. Opt. Lett., 2008, 6(3): 222~224